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Abstract

An electrochemical method for studying channels in porous rocks and similar insulators, has been developed. In
principle, the method consists of displacing a nonconducting liquid from the pores by an inflow of an ionically

conducting solution. The conductance is monitored continually as the rate of flow through the rock is gradually

increased. The rate of conductance increase is interpreted in terms of a simple model, based on Poiseuille flow

through a capillary network, to provide information about the sizes and numbers of large pores in the rock. Three

rock samples have been analysed.

1. Introduction

The extent and the configurations of the voids in porous

rocks are of vital interest in a number of contexts. It is in
the pores of petroleum reservoir rocks that the hydro-

carbons reside. Likewise ground water resources gener-

ally occupy the pores of aquifer rocks. In both these

instances, the volume of imbibed liquid is beneficially

larger when the pores are large and numerous. In

contrast, when one is seeking a rock stratum to provide

containment for radioactive waste or other pollutants,

then the presence of pores or fissures is undesirable.
The total void volume is not, in itself, a particularly

useful measure of the fitness of a porous rock for a

specific purpose. Totally isolated voids are innocuous

and blind-ended passageways are of little concern.

Interest is primarily in the interconnected spaces that

communicate with each other and, ultimately, with the

exterior. It is these spaces that are usually associated

with the word ‘pore’.
The number and sizes of the pores and other voids

determine the rock’s porosity, that is, the fraction of the

total volume that is not rock. The diameter of a pore is a

very strong determinant of its contribution to the flow

of a fluid through a porous medium. Because of their

compressibility, gases obey different equations of mo-

tion than liquids and it is the latter that will be our

concern here. Liquids flow through a smooth pore with
a velocity that is, at least approximately, proportional to

the square of the pore’s diameter and, since the volume

flow is also proportional to the cross-sectional area of

the pore, it is the fourth power of the pore’s diameter

that determines its volumetric transporting capability.

This emphasizes the disproportionate importance of

large pores. The tortuosity of the pores is also impor-
tant. These factors underline the equal importance of

porosity and of pore-size distribution in characterizing a

rock: porosity governs the liquid-holding capacity of a

rock; pore-size distribution controls the movement of

the liquid through the rock.

The methods that have been used to study porous

materials, including rocks, are legion. Sectioning the

rock, followed by micrography, is one very direct
method of observing pore structure. Another, which

has even been applied to rocks, is to polymerize a plastic

or solidify an alloy inside the pores and then dissolve

away the matrix itself. Gas adsorption isotherms are

commonly measured [1]; these provide access to the

internal area of the sample. Intrusion porosimetry [2]

involves progressively squeezing a liquid, usually mer-

cury, into the pores. In this popular method, the volume
against pressure characteristic can be interpreted as a

distribution of pore sizes, because the smaller the pore,

the more pressure is needed to overcome the surface

tension resisting the intrusion. Of course, the most direct

way of studying the flow of liquids through porous rock

is to measure the rock’s permeability under closely

controlled conditions and many such permeametric

studies are conducted routinely. Under the curious
name of ‘formation factor’ measurement, the porosity of

materials has sometimes been investigated electrochem-

ically [3] by a method that is essentially as described
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below in Section 6. We have employed other electro-

chemical approaches [4–8] in the study of porous media.

These make use of the diffusion and/or migration of

particular ions through the pores to provide informa-
tion, via an electric current, on the nature of the paths

that the ions follow.

The principle behind the present method, described in

more detail in later Sections, is easily understood. The

pores of a rock sample are filled with a nonconducting

liquid. Then a conducting liquid is caused to flow

through the rock, displacing the nonconductor. In the

early phases of the experiment, the sample remains
nonconducting, but as soon as the first trace of

conductor reaches the other side of the sample, a

measurable electrical conductance is observed. This

initial ‘breakthrough’ will be due to the largest pore

because, the larger the pore, the faster the flow through

it. As time passes, more and more breakthroughs occur

and the conductance steadily increases. With the aid of a

model, the way in which the conductance increases
during the experiment can be used to express the

distribution of pore sizes in the rock.

2. The model

Let it be made clear that we are in no way suggesting

that the model we adopt comes close to representing the
pores in any actual rock sample. A truly realistic model

would incorporate so many parameters as to defy any

useful mathematical representation. Our model has been

chosen for mathematical tractability, not for realism.

Nevertheless, we believe that our naı̈ve model captures

some of the essential characteristics of the pores of an

rock sample, from the viewpoint of liquid permeation

through the rock.
Our model is ‘capillaric’ in nature: it regards the

permeance of the rock as arising from distinct passage-

ways. Models that treat porous materials as a collection

of discrete one-dimensional tubules can be and have

been criticized (e.g. [3], p.169) and such a criticism is

valid. Nevertheless, we see no tractable alternative for

our present purpose.

The rock sample has two parallel faces and we
envisage many pores to traverse the sample from one

face to the other. There will be pores heading in other

directions and they will contribute to the porosity of the

rock but, unless they open onto both end faces, they are

of no concern in the present analysis. The pores that

contribute to transport in the direction perpendicular to

the parallel faces will be described as ‘axial pores’. Three

such pores are shown in Figure 1. Of course some pores
will intersect others, but such junctions have a minor

bearing on the transport properties and in our model

there is no recognition of pore intersection. As depicted

in Figure 1, each pore is treated as a long one-dimen-

sional tubule, essentially cylindrical in shape, with a

diameter dj that varies from one pore to the next, though

not within a single pore. All axial pores are regarded as

having the same length that is longer than the direct
route from one face to the other by a common tortuosity

factor k. We shall later ascribe a value of 2 to this

uniform tortuosity. It is convenient to assign an integer

index j to each axial pore, ordered so that j ¼ 1

corresponds to the widest pore, j ¼ 2 to the next widest,

and so on.

The most unrealistic feature of our model is the

treatment of the pores as of uniform diameter. Attempts
to formulate a model that incorporated a length-

dependent area were not successful. The dj term repre-

sents some sort of average of what in reality must be a

very variable diameter.

3. The samples

We have studied three samples of porous rock of

different types: a dolomite (sample L), a siltstone

(sample Z) and a limestone (sample C). Each porous

rock, received as part of a drill core, was machined to

the shape of a squat cylinder of diameter D (about 4 cm)

and height L (about 3.5 cm). The sample was mounted

in shrink-wrap tubing and thoroughly cleaned by

forcing, under vacuum, first ethanol, then acetone and
finally water through its pores.

After drying in a vacuum oven for 8 h, the sample was

allowed to cool overnight in a desiccator and weighed.

Next, the sample was left in an evacuated chamber for

one hour; then, still under vacuum, it was submerged in

degassed water and left overnight. After breaking the

vacuum next morning, and blotting away the surface

water, the rock was reweighed. These entire procedures
were repeated several times until concordant values were

obtained of the sample’s dry mass mdry and its mass,

mwet, after water imbibition. Making use of the density

of water, we calculated the total porosity as

h ¼ 4ðmwet � mdryÞ
pD2LqH2O

ð1Þ

Fig. 1. The simplistic model of the pore structure of rocks on which

our analysis is based. All axial pores, of which three are shown, are

assumed to have the same length kL and the jth pore has a uniform

cross-sectional area pd2
j =4.
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This is the ‘imbibition method’ of determining porosity;

other methods are discussed and classified by Scheideg-

ger [9]. h does not appear in the theory of our method,

but it provides a basis for comparison of our results.
Moreover, we regard this quantity as important for

characterizing the rock. For a similar reason, the

formula

qrock ¼ 4mdry

pð1� hÞD2L
ð2Þ

was employed to calculate the apparent density of the

rock matrix. The values of these physical properties,

with standard deviations calculated from repeated

measurements, for the three rock samples that were

investigated in this study, are assembled in Table 1,

together with other data. Of course, the presence of

isolated voids will undermine the measurements of both
h and qrock.

After physical characterization, the cylindrical rock

sample was cemented into the base of an acrylic pipe,

the inner diameter, Dpipe ¼ 37.77 mm, of which was

enlarged slightly at its lower end to accommodate the

rock. The pipe, about 2 m in length, was fitted with a

small nipple, level with the upper surface of the rock, as

illustrated in Figure 2.
We can distinguish between the total porosity h of the

rock and the axial, or effective, porosity haxial, which is

the porosity of those pores which contribute to flow

through the rock in the axial (vertical) direction. In

terms of our model, the latter is the ratio of the void

volume of the axial pores to the overall volume, being

given by

haxial ¼
P

j pd
2
j kL=4

pD2L=4
¼ k

D2

X
j

d2
j ð3Þ

4. The apparatus

Nickel gauze electrodes are positioned in contact with

the upper and lower faces of the rock sample. As

illustrated in Figure 2, the upper electrode is a disc of
diameter slightly less than that of the rock; it is

positioned inside the pipe and is welded at its centre to

a stout nickel lead. This lead is centrally mounted and is

long enough to protrude from the top of the pipe,

whereby electrical contact can be made. To ensure closer

contact with the upper rock surface, the upper disk is

pressed down by the weight of a plastic ‘sleeve’ pipe, of

about 3 cm internal diameter, which fits inside the main

pipe. The pipe assembly is positioned vertically and rests
on the lower gauze electrode, a disc of about 5 cm

diameter. This lower gauze is mounted on a nickel sheet,

to which a second nickel lead is welded at its perimeter,

and which itself rests on the floor of the flat–bottomed

receiving vessel, as clarified in Figure 2. A salient

quantity in the theory of operation is the area A of the

liquid–air interface in the pipe. This is somewhat less

than pD2
pipe=4 because of the space occupied by the

sleeve pipe and, to a minor extent, by the nickel lead

wire. In fact, in a self-evident notation:

A ¼ p
4
½D2

pipe � ðD2
outer � D2

innerÞsleeve � D2
wire� ð4Þ

Its value in all our experiments was 793.4 mm2.
To minimize air entrapment, outgassed solutions were

drawn up through the rock, under suction, to ‘prime’ the

rock channels. Thereafter, liquids poured into the top of

the pipe will, under the gravitational force provided by a

head, slowly permeate through the rock and enter the

receiving vessel. In some experiments only a small

Table 1. Model-independent characteristics for three rock samples

L (dolomite) Z (siltstone) C (limestone)

Diameter, D/mm 38.02 ± 0.32 38.96 ± 0.04 37.80 ± 0.08

Height, L/mm 32.61 ± 0.16 42.08 ± 0.07 35.87 ± 0.05

Mass, mdry/g 91.501 ± 0.005 113.72 ± 0.11 92.535 ± 0.012

Porosity, h 0.105 ± 0.003 0.1233 ± 0.0004 0.1692 ± 0.0010

Density, qrock=kgm�3 2760 ± 70 2586 ± 13 2767 ± 16

4LG=pD2j ¼ haxial=k
2 0.014 0.036

Fig. 2. Exploded cross-sectional diagram of the apparatus.
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volume of liquid was poured into the pipe and the level

in the receiving vessel was adjusted to match that in the

pipe, so that flow was inhibited. More often, the liquid

level in the receiving vessel was aligned with the upper
surface of the rock. The nipple allows an alternative

route by which liquids can be introduced into the pipe.

When the nipple is in use, a long (about 10 m) length of

narrow bore (nominally 1.59 mm internal diameter)

plastic tubing connects it to a reservoir vessel mounted

high enough to deliver liquid onto the top surface of the

rock at a suitable rate. The height H of the meniscus in

this reservoir above the upper surface of the rock was
maintained at close to 1.802 m in most of our experi-

ments.

The aqueous liquids used were degassed to deter the

formation of air bubbles inside the rock pores. Once

brought into use, it is preferable that the rocks never be

allowed to dry out, though this did, on occasion, foster

the growth of biota on the rock’s surface.

The electrical leads from the two gauze electrodes are
connected to an Australian-built instrument [10] de-

signed to measure the interlead impedance. This equip-

ment applies twenty-four a.c. frequencies, ranging from

49.95 Hz to 7.855 kHz, simultaneously, the voltage

amplitude of each being 5.0 mV. The resulting multi-

frequency current is measured and Fourier transformed

automatically by the instrument, whereby the in-phase

and out-of-phase impedances, Z¢ and Z¢¢ can be
determined and plotted against the reciprocal of the

frequency. A typical graph is shown in Figure 3. The

in-phase impedance is almost frequency-independent

and the value extrapolated to infinite frequency, Z¢(¥),

is regarded as the electrical resistance R encountered

between the nickel gauze electrodes, that is, the

resistance of the liquid in the pores of the rock. In

contrast, Z¢¢ is always small and negative: it is associ-
ated with the double-layer capacitance at the nickel

gauze electrodes, a matter of no concern in this study.

In terms of our model, the measured resistance R is the

resistance of all the axial pores in parallel. Of more

relevance in the theory is the conductance G of the

liquid occupying the pores. The total conductance, the

reciprocal of the resistance, is the sum of the individual

conductances of all the axial pores. If gj is the

conductance of the jth pore, then

1

Z 0ð1Þ ¼
1

R
¼ G ¼

X
j

gj ¼
pj
4kL

X
j

d2
j ð5Þ

according to our model. In the final step of this chain of

equalities, we assume the conductance within each pore

to be proportional to the cross-sectional area of the pore

(regarded as circular) and to the conductivity j of the

liquid that fills it, but inversely proportional to the

pore’s length kL. Equation 5 is the electrochemical basis

of the preliminary experiments reported below: it applies

when all the axial pores are entirely filled with a liquid of
uniform conductivity.

5. Hydraulic considerations

The permeability P of a porous material is defined, on

the basis of Darcy’s Law, as the volume rate of flow of a

liquid of unit viscosity through unit area of the material
when a unit pressure differential exists across unit

thickness of the material. The dimensions of P are those

of area. According to Darcy’s law the volume flow rate

though our rock sample is

dV
dt

¼ �Prock

g
pD2

4

Dp
L

ð6Þ

where V denotes the volume of the liquid, of viscosity g,
in the pipe. In our experiments, the pressure differential

is provided by a head h of the liquid in the pipe and

therefore Dp ¼ qgh where g is gravitational acceleration
and q is the liquid’s density. In our preliminary

experiments, the flow of liquid through the rock is

accompanied by a decrease in the level of liquid in the

pipe, so that dV¼Adh where A, defined in Equation 4, is

the effective cross-sectional area of the pipe. With these

substitutions, Equation 6 becomes

dh
dt

¼ 1

A
dV
dt

¼ �Prock

g
pD2

4A
qgh
L

ð7Þ

In our pore-size experiments the hydraulic situation is
somewhat more complicated than that described above.

Liquid is being fed via the narrow plastic tube and

introduced into the pipe through the nipple. Because we

adjust the inflow of liquid by this route to be initially

much greater than the outflow through the rock, the

head in the pipe rises, rather than falls. The inflow rate is

proportional to H � h, where H is the height of the

reservoir vessel meniscus above the upper surface of the
rock. Thus, analogously with Equation 7,

dh
dt

¼ 1

A
dV
dt

¼ kðH � hÞ
A

� pD2qg

4gAL
Prockh ð8Þ

Fig. 3. Typical impedance plot.
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where k is the proportionality constant between flow-

rate through the narrow tube and head. This constant

could have been estimated via Poiseuille’s law but we

chose to measure it instead. With the boundary condi-
tion h ¼ 0 at t ¼ 0, differential Equation 8 may be

integrated to

ln 1� 1þ pD2qgProck

4gLk

� �
h
H

� �
¼ � k

A
þ pD2qgProck

4gAL

� �
t

ð9Þ

Early data from an experiment with a rather imperme-

able rock display no detectable curvature when

lnððH � hÞ=HÞ is plotted against t, indicating that the

contribution of the terms containing Prock was negligi-

ble. From the slope we calculated k ¼ 0:1365 mm2 s)1.

Irrespective of the permeability of the rock, Equation 9
may be inverted and rephrased as

h ¼ kHT
A

1� exp
�t
T

� �h i
ð10Þ

where T is the hydraulic time constant of the experi-

ment, defined by

T ¼ A

k þ pD2qgProck

4gL

ð11Þ

A typical value of this time constant in our experiments

was 1.5 h.

6. Preliminary electrochemical experiments

The liquids used in our experiments were invariably

solutions of potassium chloride of various concentra-

tions (including zero) in reverse-osmosis purified water

that were degassed under vacuum, with stirring, prior to
use. No attempt was made to prepare solutions of

accurately known concentration, because the solutions

were characterized by their conductivities, which were

measured by an Orion (model 150) conductivity meter.

Thus the c values in Table 2 are approximate only. The

experiments described in this Section were all performed

with concentration uniformity, that is, the aqueous

solutions in the pipe, in the rock pores, and in the

receiving vessel were all of ostensibly identical compo-

sition. These experiments were carried out to confirm

some of the basic premises on which the pore-size
experiments, described later, rest.

We argued that the conductance of a solution-filled

rock sample should be (a) proportional to the conduc-

tivity j of the imbibed solution and (b) independent of

whether, and how fast, the solution might be flowing

through the rock. Postulate (b) was easily confirmed by

observing no measurable change in the measured

conductance G when the head h was varied or zeroed.
Table 2 shows the results of experiments on rock L,

designed to verify postulate (a) by investigating the

constancy of the G=j ratio, when the rock was filled with

a sequence of solutions of various concentrations. Such

experiments are lengthy, because it takes a very long

time to completely flush one solution from the rock by

flowing a second solution through. Often, solutions were

allowed to flow for one week or more between mea-
surements. Though the constancy is not outstanding, the

ratio of G=j shows no confident trend with concentra-

tion. The table is ordered to match the chronology of the

experiments and it should be noted that there is a strong

tendency for the measured ratio to be higher when the

new solution was more dilute than the solution it

replaced. For rock Z, we failed to verify postulate (a),

probably because it was impractical to flush this sample
for the length of time that would have been needed.

The quantity pjD2=4GL is the ratio of the resistance

of the soaked sample to the resistance of a similarly

sized volume of the conducting liquid: this is the

quantity known in the literature as the ‘formation

factor’ (see [3], p. 245). Measured values of the recip-

rocal of this quantity are included in Table 1 for rocks L

and C. The G=j value during these preliminary exper-
iments has a simple interpretation in terms of our model.

Straightforward combination of Equations 5 and 3

produces

G
j
¼ pD2

4L
haxial

k2
ð12Þ

Thus, the numbers listed in the final row of Table 1 may

be associated with the effective porosity of the rock

sample, divided by the square of the tortuosity. Despite

the crudity of our model, it is apparent that an

interpretation of the tabulated numbers as the term

haxial=k
2 is quite credible. For, with our heuristic

assumption that the tortuosity k ¼ 2, one calculates a

haxial=h ratio of 0.85 for rock C and 0.52 for rock L,

neither of which is unreasonable.

7. Pore-size experiments

Each of these experiments commenced with the rock
sample soaked with pure water, but without any

overlying unimbibed water. This condition was achieved

Table 2. Rock conductance against solution conductivity data for

rock sample L

Concentration,

c/mM

Conductivity,

j=S m)1
Conductance,

G/mS

ðG=jÞ
/mm

30 0.399 1.590 0.398

100 1.350 0.5930 0.439

10 0.1461 0.07369 0.504

30 0.403 0.2024 0.502

100 1.281 0.6000 0.468

300 3.62 1.678 0.463

1000 11.08 5.140 0.464

300 3.65 1.796 0.492
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by leaving water flowing from the filled pipe and

through the rock for many days, then allowing the

dregs to escape through the nipple. After the level in the

receiving vessel was adjusted to match the rock’s upper
surface, and measuring the initial conductance G(0), the

experiment was ready to begin.

At t ¼ 0, the nipple was connected to the long narrow

plastic tube and a concentrated (usually either 0.1 or

1 M) solution of potassium chloride was allowed to flow

slowly onto the upper surface of the rock. The flow

through the rock, zero at t ¼ 0, builds up steadily as the

head increases, in obedience to Equation 10. The
increasing head is an important feature of these exper-

iments because it lengthens the effective time-span of the

experiment. In earlier studies [11] we had imposed a

constant head, but that did not provide an efficient way

of discriminating between pores of different large sizes.

The conductance GðtÞ was measured at intervals as

frequent as one minute for a period of several hours.

Figure 4 shows typical results. As well, the height hðtÞ
was monitored. Two other tasks that require periodic

attention during an experiment are the maintenance of a

constant head H in the elevated reservoir and ensuring

that the liquid level in the receiving vessel remains in

register with the upper surface of the rock.

Rough calculations show that the conductance of a

rock sample filled with absolutely pure water, and

attributable to the H3O
+ and OH) ions present, should

have been less than 0.1 lS (or R > 10 MW), but we

never achieved Gð0Þ readings anywhere nearly as low

this, 10 lS being more typical. In the flushing period

prior to a pore-size experiment, the conductance grad-

ually decreases, but it would have been necessary to

leach ions for several years before the conductance

approached that of the flushing water. Nevertheless, the

conductivity distinction between the outgoing ‘water’
and the incoming concentrated salt solution was suffi-

cient to validate the principles of the method.

8. Theory of the pore-size method

Though there are several processes that will lead to local

mixing, we assume that the front between incoming
solution and the outgoing water is maintained distinct as

the front moves through an axial pore. It is also assumed

that water and aqueous solutions flow through the jth

pore in accordance with the Poiseuille equation. That is,

dvj

dt
¼

pd4
j

128g
dp
d‘

� �
j

ð13Þ

where vj denotes the volume of new liquid in the axial

pore and ‘ is a length coordinate measured along the

pore, with its origin at the pore entrance. The pressure

gradient along the jth axial pore is denoted by ðdp=d‘Þj
and can be equated to qgh=kL. The speed of the

advancing front along this pore, d‘j=dt, equals

ð4=pd2
j Þðdvj=dtÞ, and accordingly

d‘j
dt

¼
qghd2

j

32gkL
ð14Þ

Note that no distinction is being made between the

viscosity of the KCl solution and that of pure water. Nor

shall we distinguish between the densities of those

liquids. The ratio g=q is known as the liquid’s kinematic
viscosity, that will be denoted here by ~gg. Next, rear-

rangement and formal integration of Equation 14 lead to

Z
0

d‘j ¼
gd2

j

32~ggkL

Z
0

h dt ð15Þ

Equation 15 refers to a single axial pore and is valid only

at times short enough that the water/solution front is
still contained within the pore. Initially and approxi-

mately, the head h varies linearly with time as is

demonstrable from Equation 9 or 10. These equations

could be used to perform an analytical evaluation of the

right-hand integral in Equation 15, but we preferred to

use experimental h against t data.

Let us use the term ‘pore transit time’ and the symbol

tj to denote the time that it takes for the front, moving
along the coordinate ‘j, to reach the lower end of the jth

axial pore. Since our model treats water as of zero

conductivity, the measured conductance of the rock is

predicted to remain at zero until the instant t ¼ t1 at

which the salt solution penetrates to the exit of the

widest pore. The conductance will then jump to

Gðt1Ot < t2Þ ¼ g1 ¼
pjd2

1

4kL
ð16Þ

and remain at that value until the next widest pore also

becomes filled with solution. This behaviour is evident

for rock L in Figure 4, though not for rock Z, for which

t1 is immeasurably small in our experiments. At all times
beyond t1, there will be some pores which are ‘filled’

Fig. 4. Experimental conductance against time graphs for the three

rock samples. At time zero, the rocks are saturated with water, but

thereafter solutions of potassium chloride flow through the rocks at an

ever increasing rate. The conductivities of the solutions were: 1.257

S m)1 for rock C; 10.84 S m)1 for rock L and 1.249 S m)1 for rock Z.
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with KCl solution, the remainder will be ‘filling’. Each

filled axial pore will contribute its constant conductance

to that of the rock, the filling ones will contribute

nothing. To obtain a general expression for the transit
time tj, we use it as the upper limit of the right-hand

integral of Equation 15 and simultaneously insert kL as

the upper limit of the left-hand integral. Performing the

integrations then gives

d2
j ¼ 32~ggk2L2

g
R tj

0
hdt

ð17Þ

after rearrangement. A pore of diameter dj given by this

equation achieves breakthrough at a time tj. Approxi-

mately, the integral equals kHt2j =2A initially, so that the

tjdj is seen to be roughly constant. Note that we assume

no interference from adsorption of ions on the walls of

the pores, or of other modes of conductance, other than

arising from the three-dimensional mobility of ions.

Further, our assumption that the liquid in a pore has a
segment with no conductivity followed by a solution-

filled segment with uniform conductivity j, means that

our results are not valid at very long times. As an

experiment proceeds, there is time for both diffusion and

convection to cause mixing, blurring the solution front

as it moves through a pore. Because of this, our data

become increasingly unreliable as time progresses. Ac-

cordingly, quantitative analysis of the experimental data
will be confined to short times in Figure 5.

Because we are dealing with a large number of pores,

it is legitimate to move the discussion from a discrete to

a continuous distribution of pores. Let nðdÞ denote the

number of axial pores that have diameters greater than

or equal to d so that nðd1Þ equals 1, d1 being the

diameter of the largest pore. The number of pores with

diameters between d and d þ dd is

nðdÞ � nðd þ ddÞ ¼ dn ð18Þ

Each pore in this small cohort of axial pores has a

conductance of pjd2=4kL and therefore, if dG is the

total conductance of the cohort

dG ¼ pjd2

4kL
dn ð19Þ

In the time interval dt, the increase in total conductance
is, according to our model, due solely to the cohort of

pores that achieves breakthrough in that time interval

because those that are already filled do not change their

contribution, and the contributions of those that have

yet to fill are deferred. Because the treatment is now of a

continuum of pores, we may ignore the subscript j’s in

Equation 17, which thereby describes a one-to-one

relationship between time t and the diameter d of the
pores that are breaking through at that time. This

permits Equation 19 to be rewritten as

8p~ggjkL
g

dn ¼ dG
Z t

0

h dt ð20Þ

The same one-to-one relationship allows Equation 20 to

be integrated by specifying time limits on the right-hand

side and the corresponding diameter limits on the left:

8p~ggjkL
g

Z d

d1

dn
dd

dd ¼
Z t

t1

dG
Z t

0

h dt ð21Þ

Integration of the right-hand side is accomplished by

parts; the left-hand side integrates as a consequence of

the definition of n:

8p~ggjkL
g

nðdÞ ¼ G
Z t

0

hdt


t

t1

�
Z t

t1

Ghdt ð22Þ

This is the fundamental equation that provides access to

the pore-size distribution of the rock sample.

Equation 22 may be written more informatively as

nðdÞ ¼ g

8pj~ggkL
GðtÞ

Z t

0

hðsÞds �
Z t

0

GðsÞhðsÞds

2
4

3
5
ð23Þ

All the terms in the coefficient g=8pj~ggkL have either

been measured experimentally or are well known phys-

ical quantities, except for the tortuosity k, to which we
accorded the value 2. The experiment provides conduc-

tance-and-head-against time data from which numerical

values of the bracketed term are available at any chosen

time. The nðdÞ term is thereby calculable and gives the

number of pores with diameters exceeding d which, as

Equation 17 shows, is the number of pores with diam-

eters exceeding

d ¼ kL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32~gg

g
R t

0
hðsÞds

s
ð24Þ

which is also calculable at the chosen time. Notice that

time serves as a parameter that is absent in the final

analysis. Results obtained by this procedure are pre-

sented in Figure 5 for the three rocks and will be

analysed in the next section.

9. Results of pore-size experiments

Figure 4 shows examples of the raw conductance

against time data. Note the marked distinction between

the behaviours of rocks L and Z. The latter shows an

immediate rise in conductance whereas the former

remains insulating for about 1 ks. Our interpretation

of this distinction is that there are pores in rock Z that
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allow the transit of solution before a measurement could
be taken. Evidently, rock L lacks pores of a size that

allow transit for many minutes. The behaviour of rock C

is intermediate. This qualitative interpretation of Fig-

ure 4 is model-independent, but our quantification of

these results relies on the (imperfect) model discussed in

previous sections.

Using trapezoidal approximations for the integrals,

the conductance-and-height against time data were
processed through Equations 23 and 24 to produce the

graphs displayed in Figure 5. Though all three curves

are of similar shape, note the wide variation in the

ordinate ranges. If we interpret the graphs literally, then

rock L has 50 pores with diameters exceeding 20 lm, the

corresponding numbers for rocks C and Z being 5300

and 180 000, respectively.

Another way of viewing the size distribution is in
terms of the areas occupied by pores of a particular

range of diameters. Therefore we used the data from

which Figure 5 was generated to calculate

p
4

Zd¼dI

d¼dII

d2dn ð25Þ

for round values of dI and dII. The results of these

calculations are shown in Table 3 for each of the three

rocks. Notice the large disparity among the three.

However, in all cases small pores contribute a majority

of the total area despite their small individual areas. The
table also includes the aggregated area for rock samples

C and L and we can use those values to estimate the

effective, or axial, porosities of these samples by using

Equation 3 and ignoring pores of <1 lm diameter. This

calculation yields 0.15 for sample C and 0.067 for

sample L, corresponding to haxial=h ratios of 0.89 and

0.64, respectively, in good agreement with those reported

in Section 6. The corresponding calculations for rock Z
yield nonsensical results.

10. Discussion

Among the flaws in our model are: the treatment of the

pores as distinct tubules; the assumption of uniform

pore cross-sectional area; the assumption of a uniform
tortuosity of 2; the firm distinction between axial and

non-axial pores; the neglect of pore intersection and

blind pores; the assumption that ionic adsorption is

absent; the assumption of Poiseuille flow and the neglect

of mixing of the preexisting insulating solution with the

incoming conducting solution.

Despite these flaws, which imply that our results

should not be interpreted literally, we believe that the

Table 3. Total pore areas of pore-diameter cohorts for three rock

samples

Range of pore

diameters /lm
Rock L

/mm2

Rock Z

/mm2

Rock C

/mm2

>50 0.01 65 0.39

20–50 0.028 105 3.2

10–20 0.099 101 2.7

5–10 1.63 111 7.5

>5 1.77 382 13.8

2–5 16.7 – 31

1–2 19.9 – 40

>1 38 – 85

Fig. 5. Plots of nðdÞ, the number of pores with diameters greater than or equal to d, against d.
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different distributions that we find for rocks C and L

correspond to real differences in the distribution of large

pores in those two rocks. Though the overall porosity of

rock C is only about 60% greater than that of rock L,
our results suggest a much greater preponderance of

large pores in rock C. For reasons we don’t fully

understand, rock Z cannot be interpreted in terms of our

model.
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